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Introduction to Guidance

most vehicles in air space or water include

guidance navigation a control GMAC systems
that operate in real time as the vehicle moves

The navigation system consists of sensors to measure

the state of the system as well as tools for
filtering outlier detection estimation etc

The guidance system uses the current estimate

of the state providedby the navigation system

along with the mission objectives to compute
state and control trajectories

The control system uses the control trajectory

provided by the guidance system to compute
control commands to affect actuators engines

wing surfaces etc

Example when you drive a car you are part
of all three systems An app that tells you to
turn right in 25ft is issuing a guidance
command
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A good GNaC system is one that is

robust to measurement noise uncertainties

disturbances unmodeled dynamics etc

stable so that small errors don't cause

large changes in results

simple enough so that it can run in real time

Such a system is demonstrated in the YouTube video

Apollo 12 landing from PDI to Touchdown

The three components of GMAC are obviously

coupled

The guidance system should not rely on state

estimates unavailable from the navigation system
The guidance system should not generate control

commands beyond the actuator limits

And so on
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The guidance system may generate trajectories by

using a reference trajectory or a priori plan
solving an optimization problem
interpolation approximation or other means

In any case the method must be quick guaranteed
to work Imagine a rocket crashing because the

Newton solver fails to converge

Example Let's consider a block that can slide

in 1 D along a line It can choose to thrust left
or right but not both The goal is for the block
to pass through the target position

thrusters block
i targetposition

Em I l
l l l l l l l l l il l l

1

Because the block doesn't have to stop at the target
position it is clear the block should

thrust left move right when left of the target
thrust right move left when right of the target
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We just solved our first guidance problem Note that

we had to know our position from navigation
and the target position mission objective

How would our solution change if we had to

pass through the target at a certain time

what if we had to stop we would then need

to know position velocity dynamic model and

control limits

Example A lunar lander is 10 m above its landing
site and has 1 mls downward velocity Its goal is

to descend to the surface and touch down with

1 m s velocity what thrust acceleration should be

a Tapplied
I

aµ mh T mg
1 ii Hm g
mg at g

To descend at constant velocity I at 9 0

Hence at g will the thrust force be constant

What role do navigation mission objectives dynamics

play in our solution
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Let to be the current time and tf be the

final time The problem of finding a function

3
at to tfJ Rv

that minimizes some objective is called an optimal

control problem In this landing problem we may
want to minimize

fuel consumed
time to touch down

accelerations felt by the crew

etc

The problem of finding a guidance solution that

also minimizes some quantity is an optimal

guidance problem The solution is called an optimal

guidance law To solve such problems we will need

to understand the

dynamical model and reasonable assumptions

control model

optimality conditions
numerical techniques
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Dynamical Models

Our guidance algorithms depend on the dynamics
We will need a dynamical model that is simple

enough and accurate enough In contrast simulation

models are higher fidelity and may include many
small perturbations gravitational atmospheric etc

Perhaps the most important equation in spaceflight is

the two body equation of motion
gravitational param initial time initial velocity2nd time L

derivative E
Iq
F F to To J to To

initial position

solutions are the standard circles ellipses parabolas
and hyperbolas depending on the initial conditions

If we include thrust acceleration and disturbance

accelerations the equation becomes

it
pep
F It aid F to Fo Tko To

disturbance

thrust
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we may write this equation in state space form as

Type attired

Because It is our control variable it is common to

rewrite as

I I Inna ta

with given initial conditions Fo and Jo known a t

at each time and known aid at each time

the nonlinear dynamical system can be integrated
For much of the course this will serve as our

simulation model

Some of our guidance models can be attained

by making simplifying assumptions
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A Planetary Powered Descent Model

We will assume that the vehicle is sufficiently
close to the surface that gravity is constant

i.e a flat planet model We will further
assume that the thruster acceleration dominates

any disturbances

J FLto To
it g a t J to To

Example Let's assume that It is constant
Then integrating is simple

J gt Itt To

F g I Itt Jot To

suppose that we want Fltf E Then the

required thrust acceleration is

a t

y
gtf Itf to
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What happens as tf also called the time togo

approaches zero within any guidance algorithm
care must be taken when tf 0

How does this simple guidance law perform in

simulation

Are there enough degrees of freedom to also

hit a desired velocity target How could we

add degrees of freedom

In the Apollo lunar landing guidance they
used the above dynamical model with constant

gravity and assumed a quadratic thrust

acceleration which leads to a quartic position

trajectory
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Relative Orbital Motion

We'll now consider two spacecraft near each other

in orbit we will derive from the two body equation
equations describing the relative motion that are linear

As with the descent model above linearity is nice

because it facilitates integration

Let the target spacecraft position be To and the

Chaser spacecraft be F The relative position is 5
i e F To 15

jr
7F

Fo

g

The equation of motion for the Chaser is

µ F It
r3

it
g
Its It
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Observe that

r2 F F Fo J Tots

Fo Fo t 2Fo I J J

ro't 2T I 82 rt It
2Tq Sfo

we now assume that o l such that the last term

can be neglected

r ro it 2Tg J
3 2

r
3 ri it 2Tg

Expanding using the binomial theorem and keeping

only 1st order terms in 5 yields

r
3 ri fi g E

I
Egri J
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Substituting into our 5 equation gives

É pit agro Ij 5 5 at

Expanding and keeping only 1st order terms gives

Assume that É Mrsto Therefore

Since the equation is linear it can be written

in state space form

É Mr gross 5 E E

I Acro't I Bat
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We have written these equations in a frame independent

fashion If we assume that the target spacecraft
moves in a circular orbit and if we attach

a local vertical local horizontal LV LH frame
to the target we will obtain a very special
case known as the Clohessy Wiltshire CW

equations

The local vertical direction is defined as I Fo ro

and the local vertical position a velocity are x and I

The out of plane direction is defined as E Foto
11FoxToll

Coordinates are 2 and I

The local horizontal direction is j where Tx E
Coordinates are y y

Given a 5 in an inertial frame we can transform

to the wut frame using

x 5 i y 5 j z 5 E
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The velocity transformation must account for the
fact that the velocity frame is rotating with the

target spacecraft

x E ox 5 i

y o w x5 j
z ir Tx's E

The CW equations are then

I 3n2x 2mi ax

if 2mi ay n 4 3

E t ri z Az

we make several observations about the CW

equations

1 The equations are linear and time invariant
2 The out ofplane motion is a decoupled
harmonic oscillator

3 The in plane motion is coupled
4 The control appears linearly
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In the case where ax ay az 0 the CW equations

can be integrated analytically

4 3cosnt Xo sin nt Incl cont yo

y 6 sinnt ret Xo yo Z cont 1 Xo

In 4sinnt 3nt Yo

2 towasnt Inesinnt

I 3nxos.inint t ko cont t 2io Sinnt

y Len cont 1 Xo 2Iosinnt turnt 3 yo

I ntosinnt toCosnt

By factoring out the initial conditions we can

write the equations in matrix form

Erft Erft Xo

Y l Yo

ftp.i.iiiisitilfty yoi
it to
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Each of the submatrices is 3 3 The matrix

Ect In't Ift
Evil Evert

is called the state transition matrix

Properties of State Transition matrices

As we've discussed linear dynamical systems may be

written in the standard state space form
systemmatrix g

controlinfluence matrix

Ict Alt Ict Blt a Ct
T T
state control

Theorem Suppose zero input and A is continuous

For any to to there is a unique continuously
differentiable solution

Ict Ect to Xo

We call It the fundamental matrix or state
transition matrix STM
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The STM has a series definition you can look up

It also satisfies some interesting properties

dat E t.to Alt OICt.to et to.to I

Eft to E Cto t

E atLt to Eatt.to Eat to t

ECtz.to Eltz ti Ect to

solutions to Forced Linear Systems

The general solution to the forced controlled

linear system is given by
t

IH Elt.to to Echo B o uCo do
to

you can verify it is a solution by differentiation
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Discretization of Linear Systems

To this point we've discussed continuous time systems

because these naturally arise in physics However
the nature of guidance is discrete because we call

the system at some frequency

Suppose we discretite time as

to L c ti L tie L L tf

and we hold the control constant on every interval

Then

tix

I Hit Etta fi x ti t Effie o Blo do ietti
ti

Ai Bi

Iie Ai Ii Bini

By using the state transition matrix we can convert

continuous time systems to discrete time systems
We will discuss nonlinear systems later
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Mass Dynamics

We've been thinking of our states as positions

and velocities Another key state is mass m

Throughout the course we will model the

mass dynamics as

in 11711

Isp90

where go is the standard sea level accelerator

of gravity on Earth and Isp is the engine's

specific impulse in Sec The magnitude of the
thrust force is 11TH

Note that the equation is nonlinear in the

thrust vector because

11 Fll Tf Ty TEJ

Moreover because It Then we almost always
have to deal with nonlinear dynamics
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Example Solid rockets provide a constant thrust In

this case the mass varies linearly with time

m mo 11TH t
GoIsp

This is useful because the in equation can be

eliminated and the F
m terms now appear

linearly
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Introduction to Optimization

we previously discretized a linear dynamical system
using the state transition matrix and assuming

piecewise constant controls

Iit A Ii Biei

By writing out a few terms we can see how the

final state depends on the initial state and control

inputs

I AIo Bio

Iz AI But

A To ABio t BI

Iz A Iz 1 BUT
A'To A'Bio ABI BUT

N l
N i i

BiliIn ANIo t 2 A
i o
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By stacking all of the controls into a tall Nmxi

vector

i
and defining the matrix

An B AN213 AB BJ

n Nm

the above equation can be written as

In Anto EU

Note that E is called the controllability matrix

If the system is controllable then im E 112

and the linear system is solvable
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Suppose that matrix E has a non trivial nullspace

If there is one solution to the equation then

there are infinitely many solutions Let Up be

some particular solution to the equation and let

L be a matrix such that

im L null E

Then all solutions are given by

U Up LV

for any V If there are infinitely many
control trajectories to drive Io to In how do

we choose one

Optimize some objective

Common objectives include fuel energy and time

By fixing the O and N indices we cannot

minimize time We'll save that for later and focus

for now on some basics a fuel energy objectives
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A Few Basics

To optimize means to minimize or maximize We already
have an intuitive graphical understanding of the
concept

it Local Max
yz f xI Local min

Global mini

y 9 i Global Max
1 I 7
X Xz X

mathematically we say

x E argmin f y min f

HE argmax f Yz max f
argument that maximum value
maximizes

i 1
These words have global meaning

not local

We will always be interested in global optimization
in this class but we must watch out for local
optima
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By drawing a few pictures you can convince

yourself of the following facts

argminf argmax f

minf max f

Therefore we will need a theory only for
minimization problems

From calculus you may recall the following theorem

Theorem Let f 112 1112 be smooth If XEargminf
then f x _0

Any points that satisfy f x _0 are called

critical points or candidates Any optimal point
must be a candidate but not all candidates

must be optimal points

Question what if there is only one candidate
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Example 1 minimize fLx f x 2x o x o

We have one candidate that globally
minimizes

Example 2 minimize flex x3 f x 3 2 0 x o

We have one candidate that does not

minimize locally or globally x

Example 3 minimize f 4 e f x e 40
There are no candidates and hence

no minima

Example 4 minimize fG x 2 4125 There are

3 candidates 2,0 12 Two of them
are global minima

Example 5 minimize f x sink There are

countably infinite candidates There are

countably infinite global minima A maxima

Example 6 minimize f X 1 There are uncountably

many global minima that are also

global maxima
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The six examples above which involve single variable

analytic functions demonstrate that just about anything
can happen in optimization

Problems with constraints

All the problems we'll be interested in will have

constraints physics thrust limits boundary conditions etc

Therefore we will now consider nonlinear programming

problems NLPs

min fLx objective f i ITE s Ro

s t glx to inequality constraints g 112
7 ITE

hLx 0 equality constraints h E s 112

Note that g t he may be multi valued but I am not

putting a bar on them Nor am I putting a bar on

x Just about everything is multi dimensional from here on

We define the constraint set to be

X x C 112 gtx Eo Wx o
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we may now write aging f and Xt argyzing f

There are two types of necessary conditions for these problems
Conditions with a regularity or constraint qualification

are called Kkt conditions

Conditions without the qualification are called Fritz

John conditions

Many books focus entirely on Kkt conditions I prefer
working with the FT conditions since they don't require
an additional qualification we'll write down both then

solve some problems

Theorem KKT conditions for NLP Assume that f g ah
are differentiable If the problemattains a minimum at x

and a constraint qualification holds then the following

system is solvable

glx to
hlx o

7 20

IgG o

flat Ight t hav o D
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There are numerous constraint qualifications that make

the above theorem true Two of the most common are

Linear Independence CQ requires the gradients

of all active constraints to be linearly independent
at the optimal point

Mangasarian Fromowitz CQ requires the gradients

of hex to be linearly independent the

existence of a vector z s.t

Itg 1720 IThG1z o

for all active constraints

Two other COs are the Abadie CQ the Guignard
CQ

All of these COs are evaluated at the optimal point
Thus they cannot in general be verified a priori
For this reason I prefer the FJ conditions
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Theorem Fritz John Conditions for NLP Assume that

f g th are differentiable If the problem attains a

minimum at x then the following system is solvable

glx to
hlx D

Go o 0 70630,17 720

IgG o

To flat 7 9417 THUG 0 0 D

Note that we now have a do which can only be
Zero or one Io is called the abnormal multiplier
A solution with 70 1 is a normal solution

A solution with 70 0 is an abnormal solution

Don't let the lingo lead you astray Abnormal solutions

are quite common should not be forgotten

The condition that Ao u 0 is called the

non triviality condition

Note that 7tglx D is called the complementarity

condition For every constraint either Fito or gilt 0
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Example min x2
sit x 112 0

It is obvious that x 1 is the answer since it is the

only feasible point Let's apply the FJ conditions

Fox V x 1
2

2,1 270 20 x 1 0

Suppose 70 1 Then

2x Itv 20 x
Ey

To be feasible x must equal 1 Therefore

v v i

Thus there are no normal solutions Suppose 70 0

Then

Lv x 11 0

The non triviality condition requires v40 Thus X l

The global minimum is an abnormal solution
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Example minimize xit x xixz 3x

Sit X 20

Xz20

The Lagrangian is

L 70 xitxztx.kz 34 Aix 72 2

The derivative is

2,1 27 x 70 2 370 7 0

2

32 270 2 Fox 72 0

a gym

I X 0 72 2 0

We have four cases to investigate

Suppose X 42 0 Eq 2 72 0

Eq I 370 71

If 70 0 then 21 0 violating the non triviality condition
If 70 1 then 7 3 2 0 Case I is ruled out
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2 Suppose 71 72 0 The non triviality condition
tells us that 70 1

Eq I 2x Xz 3

Eq 2 2 2 0

Solving this linear system gives L xz l

This point is not feasible Case 2 is ruled out

3 Suppose X 0 and 72 0

Eq I 10 2 370 21 0

Eq 2 270 2 0 70 0 or Xz O

If 70 0 then Eq 1 gives71 0 violating non triviality
If Xz o then I 32 0 Case 3 has been ruled out

4 Suppose 71 0 and 112 0

Eq I 270 1 370 0

Eq 2 ToXi 7 0

If 70 0 Eq 2 gives 72 0 violating non triviality
If 70 1 then X 3

2 7220
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I

Case 4 yielded a candidate The FJ conditions are

only necessary They are not sufficient If there is a

solution we've found it

An Existence Theorem

After all that work it would be nice to have a

conclusive answer

Weierstrass Theorem If f is continuous and X
is compact closed a bounded then f attains
a minimum and maximum on X

In the above example the domain is not

compact We can make it so by adding the constraints

X E O and Xz to

we can now say that Cx Xz
3
2,0 minimizes

f for any
3
2 to Loo This is almost what we need

Is there any additional logic we can apply to

deduce optimality
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Consider the following problem

max x 1 min xu

s t X 12 s t x 12

We can then use the necessary conditions

Ao x if 7 x z

3,1 270 x 1 7 0

If 70 0 then 7 0 violating non triviality Thus 70 1

If 7 0 then x I 12

If X 2 then 7 2 20

Thus there are two candidates Neither candidate

gets the job since flx 00 as x oo

If a solution exists the solution will be one of
the candidates If a solution does not exist the
candidates will not be solutions of course
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Back to the motivatingProblem

Recall that we started with the system

Two EU

which we said would have infinitely many solutions
Let's now find the minimum energy solution

The energy is given by

I Ilaill Titi Utu Hull

Therefore

min 11411 UTU

s t no CU

we first form the Lagrangian

EUN It CU Two

The gradient is

Tul Iou EX 0
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Suppose 20 0 If the system is controllable then

IT is full column rank and 7 0 This violates
non triviality Therefore To L

Solving for 7 gives

c'U Etty o I EET Eu

a EE Two

from the equality
constraint

Therefore

U C E E two from the gradient equation

By definition of optimality no other feasible control

will have less energy
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Optimization Examples

Example minimize x 1 Xz 2

Subj to Xi Xz 2 0

Xz X I 0

Form the Lagrangian L 70 X 1 t 70 2 270

J X Xz 2 v Xa X i

Compute the gradient of the Lagrangian a set it to zero

21 270 X l t 7 V 0 l
2 1

21 To 7 v O 2
2 2

The complementarity condition is 7 X exc 2 0

Suppose that 70 0

Eq I a _v

Eq 2 I v

Thus A V O This violates the non triviality condition

Therefore 20 1
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Suppose 7 0

Eq 2 7 v I

Eq I 2 x i I X Yz

3
The equality constraint gives Xz 12 Substituting
into the inequality constraint gives 42312 2 0 Eo

Therefore X xz 42,312 is a candidate

Suppose that X 1 2 2 0 Together with the

equality constraint we have a system of equations

X 1 2 2

Xz X

The solution to this system is again Cx xz 42,312

Thus we have only one candidate If a solution exists

this is it I
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Example minimize It 42
subj to Xi 2x 24

Form the Lagrangian L 70 7 4702 t Al Xi 2 5 4

Compute the gradient of the Lagrangian

21 2704 27 1 0

2g
870 2 47 2 0

The complementarity condition is Al Xi 2 5 41 0

Suppose 70 0 Then I 40 or else it would violate

non triviality Therefore x xz 0 But this does not

satisfy the inequality constraint Therefore 70 1

Suppose 7 0 Then again X 42 0 which can't be

Therefore Xi 2 5 4

Eq I 2x 1 7 0

Eq 2 4 2 2 71 0

If 7 1 then 42 0 and X 12 f 4

If 7 2 then 4 0 and Xz IN f 8
Our only candidate is the x xz 12,0
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y

Example minimize Xz x 2
3
3 By inspection what

subj to Xzzi is the answer

Form the Lagrangian L IoXz Io Xi 2
3
370 2 l Xa

Compute the gradient

2L 370 Xi 2
2

O C
2 1

21 To 7 0 z

2 2

It is evident from Eq 2 that 70 7 1 else

the non triviality condition would be violated

Eq I then gives 2

The complementarity condition 7 l xz D gives
Xz L

Thus our only candidate is xz 2,1 giving
an objective value of 4

what if I choose O X 10 X tooo

The problem does not have a minimum since it is
unbounded in Xi
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Example minimize x 27 x2 1

S t Xz Xi 20
2 X Xz 20

X 20

The Lagrangian is L Ao x 2 Foltz 1
7 xp Xz 72 x Xz 2

73 Xi

Compute the gradient of the Lagrangian

2,1 270 x 2 27 X 72 73 0

24
270 x2 1 7 72 0

Suppose the first two constraints are active Then

XP Xz

Nex z

or IET
Xz

Since X 130 73 0
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Eq 1 I 2701 1 27 72 0

Eq 2 71 72
Thus

270 37 0

If 70 0 then I 72 73 0 which violates

non triviality Therefore 70 1 7 72 43 73 0

We've found a candidate
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Polynomial Landing Example

We want to design a landing trajectory that looks like

the following Y

I
o

The initial conditions are fixed The final altitude and

velocities are also fixed The final range a flight time
are free Thus we have 7 boundary conditions

We will assume the position trajectories are cubic in time

y aot ait t act t azt

x bot bit bat t bat

We can differentiate to get the velocity acceleration

profiles

Y a 2azt 3azt
I b t 2bat 3bzÉ

y Laz least

I 2bz 6bzt
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with these we can now write down the constraints

arising from boundary conditions

l Ao Yo
2 bo Xo O

3 a 50 0

4 b Io
5 Aot a T azTZ azT3 0 yCT O

G b 2bzt 3bzT2 0 ICT O

7 a t 2 art 13931
2

1 yet 1

There are 9 variables and 7 constraints hence two

degrees of freedom we want to minimize the net

acceleration

111 112 2az least 2b 6bzt
4 at bat 24 azaztb.bz t 36 aztbz E
Co C t Cat

The integral is their

T

JIl FH dt Cot IC T2 gGt3
O
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The resulting optimization problem is

min
a b

Cott 4Th cat

S t Eqs i 7

This is a nonlinear programming problem with 9

variables

Does a global minima exist Is the WeierstrassThemSatisfied

How can we know if we're finding the global minima

Well we've already reduced the problem to a

function of two variables If we fix the flight time
T and the final range Xp then we can solve

a sequence of linear equations generate a

contour plot
8 be bit bat 63

3
Xp

9 T some fixed number

when we do this we see that the problem with

range a flight time free is actually ill posed in the
sense that the cost can be made arbitrarily close to

zero by letting xp T 70 but zero cost cannot
be attained
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A similar analysis shows that fixing the range
and letting the flight time be free does not correct
the issue The objective has info 0 as T oo

However snow solutions result in unrealistic trajectories

one approach that does work is to fix the flight
time and optimize the range Xp

Why are we running into these issues We did not

model the mass dynamics Hence the vehicle can fly
forever w o running out of fuel

while the use of splines polynomials is an easy

way to generate trajectories it must be done

with caution

The NLP solutions are sensitive to the initial guess
Global minima do not always exist

Resulting trajectories are not always realistic

Try using splines to solve a LEO transfer problem
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Let's show that J 0 as T Xp 200 To do so we will

artificially fix T Xp And then take the limit

Ao t Ait t azTZ azT3 O

b t 2bzt 3bzT2 0

A t 2 art 1 3931
2

I

bo t b T t bzT2 bzT3 Xp

The values of Ao a bro b are fixed by the initial
conditions The unknowns are Az Az bz bz

1 2 1
3

at.tt aY f9 aaT

az T Zao 2 T2

Az T Zao
0

1 3

Is in H
o ny

bz 3 3Xp 2b T T2

bag Lbo 2xp Tb 11 3
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Note that

co aft b 1 1 2

C Azaz baby 1 13

Cz aft b 1 14

Thus

11in Cott CTZ t CzT3
T 200
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Introduction to Convexity

In many of our previous examples we found
candidates but were unsure if they were actually
minima It turns out that convex optimization
problems have a rich enough structure to obviate

such issues In some seise convex problems are

the easy ones i both theorems and algorithms
are stronger

Conceptually convex functions are linear or shaped

like bowls
convex convex

convex

Ft

non convex non convex

th
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Conceptually convex sets are sets without holes or

indentations

É 858 Ea

83 Bob Is
non convex non convex non convex

A convex optimization problem is one with a convex objective

function and convex constraint functions

Like linear programs any optimal solution of a convex

program is the globally optimal solution

Also like linear programs there may be no solutions

one solution or multiple solutions

min e
x

St Ohio

min x2
s t I exe

I
min ox

s t LEXEl
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Convex functions do not have to be smooth The absolute

value function is convex

convex

Definition A function fly is convex if

flaxtpy t a flat pfly

for all x y and all 2,1320 2 13 1 That is

the line connecting any two points is not below the

curve between those two points

See that the

blue line is above
the green curve
between the two

points
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Observation A linear function is convex since

f xxi p.ie xfCxi pfLy

for all Xy t 413

Example Is the function fuel Xix convex

No Take x L and y
Z Y Then

xx i a y x L th 2

y

L I

Evaluating the function at this point gives

f xx h a y 2 a it x 2 a a

Evaluating the linear approximation gives

afCx x l a fly 22 l x 2 2

Is 2 2 I E 2 for all a C oil No

Let 2 1
2 Then 2 12 ly 9

4 22
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Example Show that fix x is convex using the

definition of a convex function

f xx h Hy xx i a y
22 2 2 4 a xy t l a242

xflxl l a fly xx2 i a y2

Now applying the inequality in the definition gives

2 4 i 2 y 2 2 22h a
Xy i 2124220

y ET IE 2x xy ly 2 144220
x x 2xC y x y 20

all x x y 7 0

The last inequality is true for an X y and any GEOID

S flex x2 is convex
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Theorem Let f IR IR a f t c The function

f is convex if a only if for every x ER
the Hessian Ifb is positive semi definite D

Proof Expand f using a Taylor series apply the

definition of convexity D

Example Determine if flax is convex

If 2x

If 220 convexity

Example Determine if f x P on to 0 is convex

If 3 2

f 6 20 on to00 convexity

Example Determine if f x Xi Xi is convex

If 24 2 2

if 2 O

o z

The eig tf Iz Thus f 40 non convexity
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Definition A set C is convex if the line segmentbetween

any two points in C lies in C i e if forany
Xi Xz EC and any Ot to it we have

Ox l O Xz EC

Graphical Examples

BEE 11
non convex non convex non convex

These are non convex because the orange line segment
connects two points in C but goes outside of C

Example Show that the line segment s x 02 41

is convex Let x and x2 be any two points in S
The point Ox i o xz is in the closed interval

between x and Xz which is contained in S Therefore
Ox to xzES and the set is convex

Example Show that the boundary of the unit cube is non convex

Let x 0,0 and XI i i Let 0 1
2

Then exit 1 0 2
12,42 which is not in the set
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Definition The convex hull of a set 5 demoted cows is the

set of all convexcombinations of points in S

cows OH 102 21 Gulik XiES Oizo L

Graphical Examples Green denotes S Blue denotes Conus

iee Dmoomo

BaBo

s0zo

The convex hull of S is a convex relaxation of s
It is also the tightest convex relaxation
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Other Properties

Intersection If 5 Sz are convex then 5 nSz is convex

Separation Suppose S Sz are two convex sets Sins2 01
Then there is an a 1 0 and b s.t

atx Eb t xts

and ATX 2b f x cSz

In other words the two sets can be

separated by a hyperplane

aTxzb aTxEb

ammo
a

Non negative gum Suppose wizo a fi is convex for all i
Then 2 wifi is convex

Affine mapping Suppose f is convex Then f Amb glx
is convex
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Conditions for ConvexProgramming

We are interested in developing necessary conditions for
convex optimization problems we start w a general problem

We sometimes call this the primal problem
min fix
sit glx to

hlx 0 Axe5 0 for convex problems

To help in this endeavor we will define the Lagrangian

LIX Xp f x Egly then

The new variables 7 a v are called dual variables
or Lagrange multipliers There is a dual variable for
every constraint in the problem

We now define the dual function l

117,0 inf Lex w infffixstatglatutlaxb

The dual function is always concave even when the

primal problem is non convex
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why do we care about the dual function It provides
a lower bound for our optimization problem Let p
denote the optimal objective value for our problem

Lemma For any 720 and any v l 7,0 Ept D

Proof To see this let I be a feasible point i.e

gli to and ult AI 6 0

Then it is easy to see that

Iglit zig to

Therefore LCI I u fi Iga other t fly
which is true for any feasible I and 720

By taking the infimum wir't x the value of the
Lagrangian can only be decreased Thus

ela v inf yay ELLI a v E FLI

Since llap E fli for all feasible I it follows that
l a v I p flt I
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The fact that we just proved is called weak duality
The dual function provides a lower bound for our

problem

when is this lower bound tight meaning when is the

dual function equal to our objective value To answer

this question we need to maximize our dual function

This is called the dual problem

Max Ll ie s t 720
71W

we'll call the optimal objective value for this dual
problem d

primal
To summarize so far For every optimization problem
there is a dual problem sit d Ep

The positive quantity p d is called the

dualitygapistrongdualityis said to hold when p d
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with an assumption that strong duality holds
we can state a very generic set of optimality
conditions known as the Karush Kuhn Tucker Kut

conditions

Theorem Assume that f g h are differentiable

If 1 the optimization problem attains a minimum at it

2 the dual attains a maximum at at
3 strong duality holds

Then the following system is solvable

i glx to

2 h t 0

3 7 20

41 7 941 0

5 If A Ixglx 7 1 he v O D

Under the three assumptions stated these are the

necessary conditions for optimality of any optimization
problem
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Let's see why the theorem is true

Proof Assumption I tells us that get to t hit o

Assumption 2 tells us that 7 20

Assumption 3 tells us that

flat flat v

bydef'n of the
inf fly tight others dual function

I f xt Ight withy
because inf
minimizes afunctio

E flat
since hot

Ig to

The 1st 4th lines obviously hold w equality
Thus the 3rd line does too We can now deduce 2 facts

I The point it also minimizes LG v

2 The product I tglx 0

Since the problem of minimizing x it is unconstrained

FxLex V Ixflx xglx That v 0

This concludes the proof D
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Assumptions 2 3 are somewhat odd since they

gym
involve our optimization Éiy involve

the dual problem which was a mathematical

How can we ever verify assumptions 243

There is an entire sub area of optimization devoted to
this It is called constraint qualifications

For linear convex problems we can easily state

when assumptions 2 3 hold

Lemma Suppose the optimization problem is linear

If the problem is feasible then assumptions
2 3 hold i e the dual attains a maximum

a strong duality holds D

Proof See the PDF online D
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For convex problems we need to know what a

strictly feasible point is

htt 0

Definition A point I is strictly feasible if gli Lo D

Theorem Slater's Constraint Qualification suppose that the

optimization problem is convex has finite objective value

If there is a strictly feasible point then assumptions

2 a 3 hold i e the dual attains a maximum

a strongduality holds D

Proof See the PDF online

To summarize so far we have necessary conditions

for optimality called the Kkt conditions They involve
3 assumptions For linear convex problems we have

nice constraint qualifications to tell us when assumptions
2 3 are satisfied

You may recall that the optimality conditions for linear
programs were necessary a sufficient we'll now prove
this for convex programs
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Theorem Kkt conditions for ConvexProgramming
suppose that f a g are differentiable If Slater's CQ
holds the optimization problem attains a minimum at X

if only the following system is solvable

glx
to

Ax b

720

Ight O

Ifla Ight Atv O D

Proof we've already proved the necessity We'll now

prove sufficiency Suppose that the system is solvable

The first two equations imply that x is feasible

Because the Lagrangian is convex in x and its derivative

wir t X is zero at X it attains a minimum there

Thus

l 7 v x a v

fix Ight vt Ax b
fix

This shows that the duality gap is zero So x must

be minimizing f D
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we've now proved the necessary a sufficient optimality
conditions for convex problems hence linear problems

Example minimize xtPx t qty er P pt 20

subj to Ax b

Note that Slater's CQ is triviallysatisfied since there are

no inequality constraints The Lagrangian is

AT xtPx qty r Vt Ax b

The gradient of the Lagrangian is

FL Px q Atv O

Therefore the solution to this problem is obtained by
solving the linear system

P At
la 1 11

Any solution of this matrix equation will be a

global minimizer
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This leads to Newton's method w linear equality constraints

We are interested in minimizing a nonlinear function

min fix sit Ax b

As we did before for Newton's method we'll take a

2nd order Taylor approximation

min flxtu flat Fifa rt qutifix uv

s t Alxtu b

We want to choose u to minimize our quadratic
approximation satisfy the equality constraint

If x our current point in Newton's method is feasible

Ax b then Av 0

Using the results from the previous example u must

satisfy

Tifa At

A o I to a

Lecture Notes on Optimal Spacecraft Guidance — §7. Conditions for Convex Programming

c©2022 Matt Harris 68



Algorithm Given a feasiblestarting point a tolerance E 20

repeat
1 Compute the Newtonstep v from Eq B

and Newton decrement 21 7 5 44 v 2

2 stop if 742 E E
3 Line search for t
4 Update x x Tv

This algorithm is described in Ch lo 2 p 525 528

of the book by Boyd
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Example of the dual function

Primal Problem min x'T sit Ax b

write down the Lagrangian

x.ir xTx vT Ax b

The dual function is given by g v inf Lexie
Since L is a quadratic convex function of x we can find
the minimizing x by taking the gradient to zero

Ix L 2 1 Atv O x Atv

substituting this back into L gives

g v
YUTAATV UTAAtv vtb
I AATV btw

This is a concave function in V Weak duality states
that

YUTAAtv btw E inf xTx I Ax b for any V
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Discrete Optimal Control

we are now interested in solving an optimization problem whose

constraints include a discrete dynamic system

minimize J et xn fklxk.ua
K o

subj to Xkt f XieUk K o N 1

Xo is specified 4 xn O

The function fkn is the terminal cost It is a

penalty on the States only at the final time For example

if we want to drive a system close to the origin

01km 11hr11

The function lk xk uk is the running cost It penalizes
states controls all along the trajectory except at the

final time For example if we want to keep the slates

9 controls close to zero then

llxn.nu ExExutEuEuu
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The dynamics of the system are Xke f xxUk The

initial condition of the system is fixed at Xo and the

final state of the system is not fixed but constrained by
xn D

At present we are not constraining the controls i.e

UkE IR

We can apply the FritzJohn conditions to arrive at

optimality conditions specific to this problem we'll use 7

to denote our abnormal multiplier

The Lagrangian is

L XP xn 70Eje Xue ÉoXÉ f xen Xen

TX xn ti IN
see that there are Na's

Before we move on to computingpartials it will be convenient

H XKuh7,7kt Xl XkUk It f XkUk

for K O N l
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The Lagrangian is then

1 704 xn vtY xn FIH xk.ua I Ike É7ÉXK
It xn vtt xn Ho tono Attn

H Xu Uk797kt FIXE

We now compute partial derivatives and set them equal to

zero

31g 7034 Ifv In 0 Transversality Condition

31 21,1 0 Stationarity Condition
K O N l

3 351g 7k 0 costate equation
K l N l

1 III f la un Estatiniquation

How do these conditions change when there is a control constraint

of the form UK Ert we Rt gk w 10
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Example Let's look at the scalar minimum control energy
problem with linear dynamics

minimize J ÉÉuE

subj to Xke axut buk Xo is given
Xn is given

Recall the goal is to find the control sequence nohey gun i

to drive the state from Xo to Xn

Begin by writing the Hamiltonian and the optimality conditions

Hk TUE Ake axe buk

Fk a7kt costate equation
O Uk t b7kt stationarity condition

Note that the transversality condition is trivially satisfied in
this problem

Solving for un in the stationarity condition gives

UK bakti assuming 70 1
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If we can find Ian we can find the optimal control In an

attempt to do so eliminate un in the state equation
resulting in

Xke ath 57kt

Now recognize that the costate equation is a simple
recursion with solution In an an sit

Xue axe fan
k
ly

we've now reduced the problem to finding In

The solution to the above equation is

k a'to bank 21 a2j

The summation is a geometric series whose sum can be

written explicitly we'll take another approach later

xu a'to Batman4IaÉ
a'to 5am an III
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At the final time we get

µ anXo b4µ l aI
ta

where A 5 i AZNanxo Man

solving for an gives

In inCanto
xn

Substituting this back into the costate equation gives

1k ako xn Jan
k

At last the optimal control is

N K I
Uu bake Yg

anxo xn a

1his control will drive the Ca b system from Xo toXN

in N steps minimize the control energy required to

do so
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To obtain the above expression we used the formula for a

geometric series If we start back at

Xk akto Earth an a2j

and replace k with N then

Xn anXo 5am 2g Ijaz
By redefining A Bat É a s we can write

j o

Xn anXo XIN

Solving for In gives

an Canto Xn

And from here the analysis is the same

why did we use the geometric formula in the first place
Only because it provides a clean formula for A that is

easier to implement

Note that when lal 71 the numerical values explodequickly
leading to numerical issues
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Connecting Optimization Discrete Optimal Control

We started the course by studying Fritz John a KKT

conditions for optimization problems

We then moved to discrete optimal control we derived

optimality conditions for such a problem in terms of
a Hamiltonian by using the Fritz John conditions

I hope it is evident that the two sets of conditions
are equivalent They are just written in differentforms

Let's imagine a l D problem The goal is to move

an object from its starting position Xo L to

a final position of 42 0 in 2 steps
This means that at time 0 the object can be moved

and at time I the object can be moved After this
second move the object should be at zero

The amounts that we move are denoted by Uo 44
Thus the object moves according to

Desired final

z Xi u

at pos
X Xo tho
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We can combine the equations as

Xz Xo t lo t U

Since Xz and Xo are known we group them together

Xz Xo 2 Uo U

Any movements no d u that add to 2 are feasible
movements

of all the feasible movements let's find the ones

requiring the least amount of energy given by

J uptain

we'll solve the problem 3 ways

The EasiestWay Solve the problem

min Eluttui
voice

5 t Got u 2 0
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The Lagrangian is

L Custui u uotuitz

Compute the partials

Follo v D

Yu 704 t v D

If 70 0 then v70 violating non triviality
Thus 70 1 and 4 4 V

Since do Up 2 and Uo Ul we conclude

that

Uo U I
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Using the FJ Conditions we now solve the problem
with the x's still included

min
au x

48 42

S t X Xo tho

x2 X U

The Lagrangian is

L E useUi a Xo tho Xi 72 x U X2

The partial derivatives are

g
Follo 7 0

It
I 704 72 0

7
7 72 0

If 70 0 then I 72 0 Thus 70 1 We again see
that

40 4 and hot 4 2

Thies no 4 I
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Usingthetlamiltonianconditions

we now use the discrete optimal control conditions

write the Hamiltonian

Hk Eguia t 2kt f xn Uk

Hr
Ho 7ozUf 1 Xo Uo

H 7204,2 72 x Ul

The stationarity conditions are

2H_ Follo I 0 are the
2Uo

Same conditions we had

IIT aou

note these

on the previous page

The costate equations are

I I 1 Note it's the same again

2 1

Since the conditions are the same no U I
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Discrete Linear Quadratic Control

Let's now investigate the matrix vector QR problem

an

i

É true
s t Xue A Xet Buk Xo Xn given

As before begin by writing the Hamiltonian a optimality

Hk 70WER un FI A Xu B u

Ty AtTutt

0 70 Run Btduel

Solving for the control in the stationarity condition gives

Uu R B Ike assuming 70 1

What would happen in the abnormal case where 70 0

We can then substitute this into the state dynamics
to get

Xue A XK B R Btake
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One can show i.e youshould show that

7k AttnKy

such that the state equation can be written in terms

of Aw

Kt AXE Bpi BtAttn
k ily

writing out a few terms in the sequence gives

X Axo 312BtAttn
1
yn

X2 AX BR BtAt N
2
yn

AXo ABRtBtAt N
1
In Bri BtAt N

2
In

From here we can deduce the following

Xp Atx A i Bpi BtAttn
i i
y

We now set K N to find an expression for Xn

Xn ANXo É An Br BtAttn
i ily
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The above solution requires that it exists What is the

meaning of this requirement To see let's write out n

N AN BR 13TATw

AN2 B 121 BTAttn
2

AOB R
t 13TAt o

B AB AN B R
nope B AB AN BJ0

The matrix C B AB AN BJ is the controllability

matrix Thus if we drive the AIB system from Xo to xn

with the above control law if rank c n i e if the

system is controllable

What is a weaker condition than having A exist
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Let's now investigate the problem with terminal objective

N l
T

minimize XNT5nXn t E E Un R the R2o S Zo
k O I

s t Xµ AXie1 B Uk

Xo is given but not Xn

As before begin by writing the Hamiltonian a optimality
conditions

Hk IUE R un III A Xu B un

t7 a A 7kt i TN Sn N
transversality Condition

o T
0 7 Rule B 76 1

Solving for the control in the stationarity condition gives

Uu R BThee assuming 20 1

we can then substitute this into the slate dynamics
to get

Xu A Xie B R BThee
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If we denote Upree as the optimal control from the

free final state problem and Uti as the optimal control

from the fixed final state problem what can we say
about the relative magnitudes of

TZ UeixRUFix and EUFIER hence
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Discrete La Regulator
We now consider the discrete QR problem with a running

cost on the state We also let the final state be free but
penalize it as well

min xntSnXn I XÉQXk Untrue

subj to Xu Axe Buk

we require that Sw Sat 20 Q Qt 0 R Rt 0

Also the A B Q AR could be time varying but we don't

do that here for simplicity
As motivation consider a spacecraft trying to regulate its

state or drive it close to 0

É

x

Z

If the spacecraft s is at the origin and the

origin is a stationary point no control is needed

Otherwise some control is needed to drive it to

the origin keep it there
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To analyze this problem we write the Hamiltonian

Hk To xEQxu untrue 7nF Axn1Buu
we'll assume 70 1 again

The costate dynamics and transversality conditions are

1k QXie AT7k In SNXN

The stationarity condition is

2141 Rule BTW D Uu B B Tue
24k

The techniques we used before no longer work since the

recursion for Ice is no longer homogenous A method

introduced by Bryson Ho is the sweep method

Since In Snxn assume there are matrices su set

Tie SkXk V K EN

Now we need to find formulas for Su
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Substituting into the state equation gives

Xue AXK BR B'SktXk

Solving for Xue gives

Xue I BR B'Sue Axe

which is a forward homogenous recursion for the state

Substituting Fu Saxe into the costate equation gives

sexy QXu AtSueXue
QXu AtSa I BR B'Sue AXu

Since this must hold for all Xu we see that

Sk Q Atske It BR BtSee A

Another way to write this using the matrix inversion lemme is

Su Q At See She B B'SueB R B'See A

The above equation is known as the Riccati equation
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Since we know Sw we can find all Su We can then

write the control

uh R BTSue Yael

We are almost there but uh depends on Xue which is

a future state

UK R B'Sue AXue Buu

It R B'SueB Uk R B'Sue Axa

Pre multiplying by R and inverting gives

Uk Rt BTSae B B'Sue AXu

We now define the Kalman gain as

Kk Rt BTSue B B'Sue A

so that the control is simply UK Kieth Note that the

Kalman gain is time varying even though A B Q AR are

time invariant This is a feedback control law since it depends

on our current state Xie not the initial state Xo
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While simple to implement we still have to store a sequenceof
S matrices

Is it possible to come up with a single S and hence

constant feedback matrix

One approach is to consider very long time horizons where

N K 00 If the Su recursion reaches steady state then

Se Sue I S The above Riccati equation becomes the

Algebraic Riccati Equation ARE

S Q At S SB BTSB R BTS A

The Kalman gain is then constant

When does the limit exist
When is S independent of Sn
When is the closedloopsystemstable

Informal theorem The above hold when

A C is observable where Q Ctc

and A B is stabilizable D
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How can we find the steady state matrix 5

One approach is to pick an 5N and iterate backward

until a steady state is reached

MATLAB has a built in command i dare

Lecture Notes on Optimal Spacecraft Guidance — §10. Discrete LQ Regulator

c©2022 Matt Harris 95



How can this be used to track nonlinear dynamics such as

a spacecraft in orbit

The dynamics of a nonlinear system are given by

x f xiu

we want this system to follow some pre computed optimal

trajectory denoted by x u Linearize about this

8I T fLx u Sx Tuf x u su

Then discretize e.g using Euler integration

Sxati 8xuth xflxIuII8xktTufCxIf.u su

I h xflxie.netJ8Xu hTufLx u u Suk

Are Bre

Au Stk BuSure

Thus the perturbed dynamics are linear time varying
We can solve the QR problem for Stu Sure
The actual control we apply is then UE U Sure
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Discrete LQ Tracking

In the previous notes we developed a feedback controller

to regulate the dynamics i.e keep the state close to zero

We will now develop a feedback controller to track a

reference output trajectory

Reference trajectory re is one that may not depend on all

States such that our goal is to use little control and
have GXK I re

The discrete optimalcontrol problem that models this problem is

min Cxn rnTP Cxn rn

I ex rutQ Cx re untrue

subj to Xue Axe Buy

To begin analyzing the problem write the Hamiltonian

HE ex ra tQ Cha ra I Untrue

7kt Axe Bun
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We'll assume that70 1 The costate equation is

7u Atta 1 C QCXie EQ rk

The stationarity condition is

0 Runt BT7u Uk R B Tue

The transversality condition is

n Ctp Cin Rn Epc xn Ep rn
Sn un

As we did before we'll use a sweep method whereby we

assume

1k SkXk Vk

The control equation is then

we B Bt SheXue Viet

Xue AXk Bri'BTSµXk t BE B Yee
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Solving for Xue gives

Xue I t BR B'Set AXu BR B'Vee

Using this in the costate equation gives

ji

ÉQCXu LIK Atve

t IBRII.BE BRIBIE

Grouping all of the Xu terms and non xu terms

Skt CtQ C AtSue It BRB'Sue A XK

I Uk Ctare Atra t Atset It BR issue BRB'vet D

Since this must hold for all Xu both terms need to be

zero The first term lets us find Sk as a functionof
Skt The second term lets us find Vu as a function of
Sue and VK.tl
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The optimal control is then

UK R BtAke

R Bt Sue ther Ven

R B'see AxutBuu R B'Vat

Premultiply by R and solve for Uk

Uh Rt BTSkeB Bt Sat AXu Vet

We can make things look nicer if we define the

Feedback Gain Kk Rt 135ktB B'See A

Feedforward Gain Ki Rt B'SueB Bt

s t Uk KuXu Kivett

How would things change if the system were time

varying i e we had An and Bu
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When the dynamics are time invariant we can look for
Sub optimal constant feedback gains As before if CA B
is reachable and A CTQ is observable then the

recursions for Kk and KI reach steady state at N k 200

The constant gains are then

K BTS B R BTS A

KV BTS B t R BT

un k Xu Khet

It appears that we have to still store the Ye sequence
But we don't Instead store Vo and then propagate

forward using

µ A BK Tvr CA BK Q rn
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Discretization of Nonlinear Systems

By assuming piecewise constant controls the discretization
and numerical solution of optimization problems with
linear dynamics is relatively straightforward

Given a nonlinear function f D Ru it may be

possible to decompose it into linear combinations of
basis functions Tilt

Oo

f t ai Tilt
i o

You are probably already familiar with this concept

from linear algebra For example

I at I
E J
basis
vectors

Just as there are many bases for IRE there are

many bases for a function space In these notes

we will use the Chebyshev polynomials as the

basis functions
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Chebyshev Polynomials

These polynomials are defined on the domain E1,1J
and given by the formula

To t l

T Ct t

Tm G 2TTh t Tn Ct

Example TzCt 2T t I 212 I

Tzlt 2T 212 I t

443 2 t t

413 3T

we also have Chebyshev polynomials of the second kind

Volt l

U Ct 2T

Um t 2TUnCt Un Ct

Both kinds of Chebyshev polynomials form an orthogonal

basis
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The two kinds of polynomials are related by

2Tult Un t Un ult Tn t UnCt tune Ct

They satisfy a number of interestingproperties

Tn l l

TnCt L s
Unci ht

Unc 1 C 1 ntl

Their derivatives are also related

Tilt i Vi Ct

ViCt it 1 TieCt t Unlt
2 1

There are other properties too
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Suppose we discretite the interval E i i into n 11 nodes

to H the The function values are f ti
we can then use the first n 11 polynomials to
approximate the function

f G I oaitilt

However we must first solve for the Ai values This

is easily done

f to

i n i
I

f l

a T f

After computing each Hj we can also

approximate the derivative of f

f CHE Etoai Ct
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Using the same matrix notation as above evaluation

at the nodes gives

f ta

it f
D

DF

That is there is a matrix D that maps the function

values at nodes ti to derivative values at the nodes

This matrix is called the Differentiation Matrix

If we have a choice in the node selection process
we can choose them in a way to minimize the

approximation error The optimally placed nodes

are called the Chebyshev nodes

Xk cos LI 2k K I n nti
n 11

It is common for these polynomials to be used in

optimization and boundary value problems However

the nodes do not always land at the end points
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Therefore they are some times approximated as

Xj cos II j o in

Note that the differentiation matrix depends on the

node selection

Example Using the approximate Chebyshev nodes

compute T T and D with n 2

The above formula tells us that to 1,4 0 2 1

The T matrix is givenby

To to T Cto Tz to

f f
i i t

ToCtr T Ch Tz t I o I

To ta T Cta Tz ta I I 1

Its derivative is given by

Toto tilts facto
fo

i 4
I toCtr i Ch Ta t O 1 0

To ta T Cta Tz ta O 4
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The differentiation matrix is

D it f
3 4 i

gI 0 I

I 4 3
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Introduction to Optimal Control

We will optimize continuous systems whose evolution is governed

by ordinary differential equations If you recall our foray
into discrete optimal control was motivated by such systems
In continuous optimal control we no longer need to discretize

to analyze the problem

A standard optimal control problem is

ftmin J 4CtfXf f Lltix a dt

subj to I fltixia Xo is given

Y tf tf 0 Uct E r

As in discrete optimal control

I is the terminal or Mayer cost
L is the running or Lagrange cost

f is the system dynamics w initial condition to

Y is the terminal constraint
r is the control constraint

Lecture Notes on Optimal Spacecraft Guidance — §13. Introduction to Optimal Control

c©2022 Matt Harris 109



Example The goal is to achieve a minimum time rendezvous

using the CWH Equations and bounded control

tf
mine tf or min flat

to

subj.to I Ax Bu Xo given

Y tfXf Xf O

Il ult Il I f

Example The minimum fuel rendezvous has objective

tf
min Hult 11 at

to

Example The minimum energy rendezvous has objective

tf
min J Hults112 dt

to

Example The QR objective is

mine XEtglsfxctfj zffxtsQXHI UTHRu.CH dt

Lecture Notes on Optimal Spacecraft Guidance — §13. Introduction to Optimal Control

c©2022 Matt Harris 110



The necessary conditions for an optimal control problem are

proved in another set of notes They are commonly called

the maximum principle Pontryagin's Principle

The conditions are If and u are minimiters then there

exists a 70,741 F 0 with Joe Oil such that
nontriviality abnormal

multiplier

H Aol If Hamiltonian

G 700 Vtv EndpointFunction

x 21 f State Equation
27

1 21 Costate Equation
2x

Ittf 262
7

Transversality Conditions

HCtf 262tf

u E argmin Htt x w Pointwise minimum condition
wth
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A comment on vector derivatives Given a scalar valued vector

function f R IR we denote its gradient as

If If 2xf f
faflax
2 f

h l

Given a vector valued vector function T Rt IR we

denote its gradient as

24 Txt 2 4 4 2412

i

mm

1
1
I
am axn

So let's expand the following

costate equation I 34 7034 2 7

transversality conditions Atty 3 to4
t

2 V

HH 34 7034 Itv
many authors use other conventions This one is the cleanest
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Example Let's think about a simple car on a straight track

trying to reach the finish line as quickly as possible

min tf
s t I L Xo 0 4 1 I Lull

The solution procedure is to form the Hamiltonian a endpointfunctions

H Tu
G Iott T V tf 1

Then start going through the conditions

I u

1 0 means 7 is constant

Act v gives no usefulinfo
HC I 70 7 tf ult
uct argmin Aw wet I

720

Lw El
singular

7 0

7 0

If 7 0 then 70 0 violating non triviality Thus singular
solutions cannot occur The optimal control is either always I

o always 1
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If u l then t Since t20 we can't satisfy
the final condition XCtH 1

If u 11 then X t The final condition is satisfiedwhen

tf L

The optimal control is UCH I f tCToTJ

Example Let's minimize the energy to move the car fromXo 0

to Xf L Ignore the control constraint

tf
mine fEutat

5 t I U Xo 0 Xf L

We first form the Hamiltonian endpoint functions

H tout Tu

G v Xf 1

The optimality conditions are
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x u

4 0

If V

Hf o IfUI Ifaf
ult argumin 7ozw 17W

Suppose that 70 0 TheHf_0 condition implies Uf D since

Tf cannot be zero When 70 0 the pointwise minimum

condition reduces to u 00 or too inconsistent with Uf o

Thus 70 1 In this case the quadratic function is

minimized when its derivative is zero i e u 1
The Hf D condition indicates U2 U2 u2 O u O

But U 0 won't satisfy the boundary conditions

The infinum is Zero but a min does not exist

This is the equivalent of trying to minimize
e Although motivated by a real problem

the problem is ill posed
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Let's now fix the final time at tf 2 Then

tt tf I
tf z

The endpoint function changes to

G V xp 1 V2 tf 2

The transversality condition becomes

HH V2

Everything else remains the same and we need to find a

constant control that goes from 0 to 1 in 2 seconds

The
optimal control is ult Iz f te to zJ

Example Let's now look at the minimumfuel problem

min luctilat
O

s t I u Xo 0 Xf 1 4 2 I 1441
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The Hamiltonian and endpoint functions are

H To ult Tu
G V xp 1 U2 tf 2

I 0

If V

µ y
yields no usefulinfo since v and er are unknown

U E argmin
lens

to w Aw

1
If 70 0 then u 720

I 7 LO

sing 7 0

Note that this singular case cannot occur since it would

violate non triviality Also u 1 and u I do not

satisfy the boundary conditions Thus 70 1

To satisfy the pointwise minimum condition we need to

minimize ult Xu subj to Ibuki

If I 1 then u 1 this won't take us to the

final point

If
i 1 721 then u O This won't take us to the

final point either

If 72 1 then u 1 This won't take us to the

final point either
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If 7 11 the minimizing control is non unique
Another singular case But this is our only
option It must be that 7 1

Any control acts t to if f t tozJ will be an

extremal control i e a candidate for an optimal

control

Let's list a few options

uct Iz f t T I

act 0 Etat 5 1

I t to if

There are many more solutions Like regularoptimization

problems optimal control problems may have no solutions

see above one solution see above or infinitely

many solutions this problem

How do I know 5 1 is actually the optimal Because

the problem is convex Solve this as a discrete optimal

control problem to see this numerically

Lecture Notes on Optimal Spacecraft Guidance — §13. Introduction to Optimal Control

c©2022 Matt Harris 118



Example Let's look at a scalar minimum control energy

problem with linear dynamics

min Fuat

sit I ax bu Xo tf tf given with bars

The Hamiltonian a endpoint functions are

µ Eat Alaxtbu

The optimality conditions are

2 2 axtbu 1 2 at

741 2 M

HH 34 V2

uct t argumin Ew't Abw
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Suppose 70 0 The pointwise minimum condition implies

u 100 which is infeasible would give infinite cost
Thus 70 1

The quadratic function is minimized when its gradient is

zero i e u bl

Substituting into the state equation gives

I ax 57

Since the costate is homogenous its solution is givenby

Act eattf t

making the state equation

I ax fealty t

The solution to this equation is

t

Ct eat o yo feat
t
beattf T y at

O
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Evaluating at the final time gives

xp eatyo
ealtt t yea tf Tyga

eatXo N If

We can now solve for If provided A 0

If I
eattxo Xp

Substituting this back into the costate equation gives

a eaff eattto ly

The optimal control is then

u yeah't
t
catty y

This control will drive the Cab system from Xo

to xp in tf time a minimize the control energy

required to do so

Note how similar the process is to the discrete example
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Example Vehicle p is pursuing vehicle e which is evading

by moving to the right with constant velocity

e y

h og Ye

I 7 x
P e

The pursuer starts at the origin The evader starts at

the point l h The dynamics of the pursuer are

X u I a cos 0 horizontal

y
v i a sin 0 vertical

The known constant thrust magnitude is a The control

variable is the thrust angle 0 The pursuer wants to

intercept the evader as quickly as possible

minimize tf subj to above ODES

yCtf h

XAtl L Vets

Thus 4 tf and Y Xf d Vets
Yf h 1 0
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The Hamiltonian and endpoint functions are

H X Ut Tzu Tzacoso t IyasinO

G Totf t V xp l Vetf Va Yf h

The optimality conditions are

x u Oy u I acoso v asino

29 0 792 0 13 7 Ty 7oz
it I D

7 const Zzconst 73 7 tf t 173g Ay 72 tf t t 74g

Tif Y 72g V2 Izf O Tyg O

Hf do V Ve ViUf Uvf

Oct C argm.ir Azacoswt 7yasinw
w

BasinO Iya cosO tano
7473

Using the costate a transversality conditionstogether we see that

73 V tf t 74 vz tf t
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I

Thus I called the bilinear tangent law

t.no E
That is the optimal thrust angle is constant We can

now easily integrate the state equations

u at coso
at sing

Eat'coso

y at'sino

At the final time we must have

a tf cost l vetf tano
effetatf sino h

The only thing remaining is to find the optimal final time
One way to do this is to square both sides in the above

equations and add

fatty sinzotcoso It levett

I a'tf W t l 2lvetft Vitt

This quartic equation can be solved for tf the
minimum intercept control
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Non singular Minimum Time Control

We are now going to investigate optimal control problems beyond
the LQR paradigm QR problems are important especially in

tracking type problems Many problems do not fit that structure

Example This is the minimum time control of a double

integrator All quantities are scalars

min flat
s t Ii xz

Iz y

o No X t o

210 Xzo Xz tf O

tutti

we begin the analysis by forming H a G

H To t I Xz t Izu
G V Xif o V2Xy O

The costate a transversality conditions are

o

a

Eg
o

of 3 j
V2
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Hf 21 0

Ztf

The pointwise minimum condition gives

7220u E a
rgwmI Kw I azco

singular 72 0

Let's first investigate the singular case Assume that 2 0

on some non trivial interval of time

72 0 2.2 0 2 0

as seen from the costate equations At the final time

Hf do I t7
0

0 To _o

This violates non triviality We conclude that the singular
case cannot occur

As a result the control can take only values of It

Observe that 7oz is a linear function of time meaning

it can only switch signs one time Denote such a

switch time as ti
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Thus there are 4 possible control solutions

l t t t totfJ
a II's a

I f t EEtotr I V teth tf

Because it is 72 that is causing the control to switch

it is sometimes called the switching function

Integrating the state equations with u It gives

Xz It a

IET at b

where a _Xzlo and be Xzlo Eliminating t gives

EXE1 C for u I

EXE d for u I

we can then plot the parabolas for various values of C d
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CLO C o c 0

HE

d LO d o d LO
u 11 u 1

Now pause and think about these graphs If we start in

the 1st quadrant applying u 11 will move us farther from
the origin Applying u I will move us into the 4th quadrant
As soon as we hit the green ie et curve in the 4th

quadrant we can switch to u 11 and go straight to

the origin

This motivates the following switching curve X 4 21 21
AXz

1 4 1

If the current state is above the switching curve apply
a control of u I If the current state is below the

switching surface apply a control of u 11 If the
current state is on the switching curve and Xz is
positive negative apply u l u ti
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1

Since we've solved the problem for any current state
this constitutes a feedback control law This is the best

possible situation

We'll now explore two other ways we could solve this problem

They will result in open loop solutions meaning the solutionis

specific to the initial state

A Sequential Convex Program For a fixed final time we could

discretize and solve in Yalmip If Yalmip returns infeasible
we know our final time is too small If Yalmip returns
a feasible answer then the minimum final time is less
than or equal to the final time used

Thus we need to solve a sequence of Yalmip problems
searching for the least final time for which the problem
is feasible

This type of approach is called a Direct method It involves

only the States controls It does not involve the

costates
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The Shooting Method The shooting method is an Indirect

method It uses the costate's and it tries to solve the

optimality conditions

Returning to the optimality conditions we can rewrite them

as a two point boundary value problem

I Xz

a

aim
Iz sign Az Xzlo given xzltf given
I o 7 o unknown

7210 unknown

see that the initial costates are unknown Also the final
time is unknown Thus there are three unknowns

Fortunately we will always have the right number of equations
to resolve the unknowns

X tf 0 Xz tf 0

Hf To Fifty 744 0

The optimal control problem has been reduced to a root

solving problem Guess 7,10 7210 tf use Newton's

Method to iterate satisfy the 3 equations
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An Approximate ShootingMethod Unfortunately the above problem

is non smooth because of the signZz term

The problem can be approximated in a smooth way using
the tanh function In fact lim tanh yds sign 1a

j oo

Thus the smooth boundary value problem is

X Xz

xE tanh yw
I O

D I

with all other constraints the same
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Terminal Descent Phase Let's now look at a variation

of the above problem which has gravity and mass

dynamics Consider a lunar lander in the vertical terminal

descent phase

JT
A

The equations of motion are

I Xz

Iz g TIM
in 2T

The objective is to minimize the flight time and the thrust

is boundedby Truax Starting at some altitude downward

velocity the vehicle must land on the surface with

zero velocity
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The Hamiltonian for this problem is

H To 71 2 721 g Ttm 73C at

The costate equations and transversality conditions are

g
2H
z O 7 f Vii

j 24
2 2 7 7zf VZI

Iz 241am IT 73g O
zn

The pointwise minimum condition is

T E
aoIw na En

d 3 w

O 74M 273 2 0

Mm 273 L O
IngTia aym n.io
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we will now investigate the singular case Suppose that

Ym 73 0 on some interval It tzJ

Iz ami Iz 2m13 EO

I at 273 724 0

2 IO

Thus 2 is zero for all time since 741 0 Furthermore

Iz is constant Let's look at 3 cases

1 Suppose 22 0 Then 73 0 on It tzJ Since
Mm 273 0 Furthermore 13 0 everywhere such that

73 0 everywhere At the final time the Hamiltonian

is zero causing 70 0 This violates non triviality
Thus 7210

2 Suppose 7270 Then 1320 since 74in 273 0

Also Ig 0 A function that is positive increasing

cannot terminate at Zero 74 0 Thus 127 0
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3 Suppose 1220 Then 23 0 and IzLO Thus it

is impossible for 2zf o Thus 2240

To summarize we assumed singularity and then arrived

at various impossibilities

We now know that

T Ina
Hm ads so

74in 473 LO

we also know that the final phase of flight must be
thrusting or else the vehicle will not land with zero

velocity

As such we expect the optimal solution to be a

coasting phase no thrust followedby a powered phase

thrust

This is shown in the 1964 paper by Meditch
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Singular Minimum Time Control
We will continue our investigation of minimum time problems

by looking at the rendezvous of spacecraft in LEO

Consider the relative motion of 2 vehicles described by
the planar Cwhl equations

I Axtbu A is 4x4 bis 4 1

The goal is to drive the system from an initial state

to the origin in minimum time w bounded control

Note that I've written the control influence matrix as

lowercase b indicating that the control is a scalar An

immediate question is can a 2 d system be controlledby
a single control

To answer this question we need to look at the controllability

matrix

C b Ab Ab A'b which is 4x4

If this matrix is full row rank 4 then the system is
controllable
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Let's first assume that b 0,011OTT That is there is

control on in the local vertical direction Then

rank c 3

and the system is not controllable

Now assume that b 0,010,1ft Then

rank c 4

and the system is controllable Now that we know the

system can be controlled let's analyze optimal solutions

As always we begin by writing the Hamiltonian endpoint

functions

H To It Anbu
c vt xf o

The costate a transversality conditions are

7 Atd If V Hf O
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The pointwise minimum condition is

E a
TITI

m Ibu 1 Ib o

I Ib Lo

sing Ib 0

Let's see if the singular case can occur i e is it

possible for Itb to be zero on a non trivial interval of
time

Suppose Ttb 70 on an interval It tzJ Then by
differentiating we get

Itb 0

Itb ft Ab O

Ab ITA2b 0

ITA b IA b 0

We can stack these up in matrix form

b Ab AibA'b TI O

57 0
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Note that if C is full row rank then Ct is full column
rank That is its null space is trivial and the only
solution is 7 0

If 7 0 anywhere then it is equal to zero everywhere since
it is the solution of a homogenous ODE

At the final time H 7 Axtbu 0 70 0

This violates non triviality Thus singular solutions cannot
occur and the optimal control is bang bang

How would things have changed if the system had two
controls

I Axt bin bcuz

The analysis would be very similar but we would now

require both controllability matrices

C by Ab Ab A b

Cz be Aba Aba Abe

to be full row rank This is left as an exercise for you
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Let's now consider the rendezvous of three vehicles The

new system dynamics A BT are

A I f 5 bo Ia I
where A b are the same as above By defining

B 51 ba

it is a simple matter to show that

C E B AB FBI is full row rank

but I 5 A5 J is not

and I 52 Abi J is not

As a result we cannot rule out singular solutions

Theorem 6 5 in the book by Athans Falls tells us more

solutions to this problem must be singular

The book by Athens toFalls also has a nice discussion on

existence uniqueness
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Let's suppose for concreteness that U2 is singular Just because
it is singular doesn't mean that 424 1,17 Singular
solutions can also be bangbang

In fact LaSalle has a famous theorem known as the

bang bang theorem If any solutionexists then a

bang bang solution also exists

How you find the singular solutions
or this magical bangbang

solution isn't so obvious Maybe this is why so many authors

ignore them

My MinimumTime Rendezvous paperfrom 2014 provides

one way of finding the bang bang solution

How can we find the singular solution s A typical

approach is to differentiate the switching function until

the control appears and then solve for it

73 0

Itb TATb 0

For this problem the control will never appear Thus
we don't have an analytical way to solve for the control
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In other words we don't know how to write u ULI

An effective approach here is to disorotize and solve

directly The figure below shows a control for two vehicles
to rendezvous It is clearly bang bang
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The figure below shows the optimal controls for 5 vehicles
to rendezvous The controls are singular but still bang bang

They were found using Yalmip and a procedure described

in my 2014 paper
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To summarize

Some problems do not have singular solutions We

often prove they don't using a controllability condition

Some problems do have singular solutions e.g the

rendezvous of many spacecraft
when the solution is singular the optimality
conditions don't allow you to directly solve for the
control At times they don't give any useful info
In these cases direct methods are useful
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Goddard's Problem Iterative Guidance Mode

We are going to study Goddard's problem which was first
proposed in 1919 It received significant attention in the

1950s 1960s as it is an interesting optimal control problem

The problem is to determine the thrust profile to

maximize the altitude of a rocket starting from
rest on the surface

The forces acting on the vehicle are thrust T gravity

g which we assume constant for simplicity only and

drag D vile which may depend on the speed and

altitude

The states of the system are altitude h speed v

and mass m

The thrust magnitude is bounded by 0 IT ETmax

The problem is

max hat
s t L V h lo 0

j Th DWM
m g u lo 0

in LT m o given met given as If
0 ET ETmax
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Analysisof the problem begins by forming the Hamiltonian
endpoint functions

H a v 7oz Ym Dlm g Izxt

G Toheft U Mf rife

The costate a transversality conditions are

72 212 Alf To
m 2h

z I t 7 2D 72g O
l

M TV

IT ID 73g V
m2 m2

Hp 0 since the Hamiltonian is time invariant

we also know that 14 0 at all times

The pointwise maximum condition is

T E argmax Im 213 w
OEWETmax

Note that we are using arginax since it is a maximization
problem
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There are then 3 cases

Tmax Ym 27320
T 0 74m 27320

singular 74m 273 0

Let's explore the singular case Along a singular arc

where 721m 273 0 for a non trivial interval of
time we must have

72 2m73 D

12 2h73 2m33 0

a tazz a'Taz am
Est E D

7
37 xD a 273 74m T

o ma 2 xD 72

Continuing on we differentiate this w.at time and we get

T D ng t m

Dtac to
910 031 cv32 ve

where 1
2
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Thus by differentiating the switching function twice we

found that the thrust would have to satisfy the above

expression

In this problem we could not rule out singular solutions
However for a portion of the solution to be singular
we must have

11 0 10 0 and 09 0

In matrix form we must have

i i i ii H L

If the matrix is full rank then 71 72 73 0 Note that

the costate equations are homogenous such that if they are

Zero somewhere then they are zero everywhere At the final
time Iif To But Io cannot be zero since this would

violate non triviality Thus the above matrix cannot be

full rank
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Computing the determinant setting it to zero gives

D ng WD v 0
2V

which must hold along any singular arc This equation is
sometimes called the singular surface

We won't show it analytically but solutions to this problem
are typically of the form

T TMax

t singular
T 0

This type of sequence is called bang singular off

The implementation strategy is the following

Apply maximum thrust until the determinant

becomes zero

Switch to the singular thrust until burn out

Coast to maximum altitude
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Minimum Time Orbit Injection

We now assume constant thrust acceleration T TIM
and consider a minimum time orbit injection X is

the range u is the range rate y is the altitude
and v is the altitude rate The optimal control

problem is below

min tf
sit I u xco

i Tcoso y o 0 u tf Uf

Tsing
za

tf is me

y V y tf Yf
g V60 O V tf 0

The Hamiltonian Endpoint functions are

H 7 u Fav 73Tcost 74Tsino g

G Toff t V acts af
t v2 yay Yf v3 ray o
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The costate and transversality conditions are

1 O Iif 0 a is zero

Iz 0
22g V2 7oz is constant

Iz 11 asf 4 73 is constant

Ty 1a day 03 ay is linear

Hf To

The optimal control is given by

Oct E argmin Iztcoso Ty sino

73Sino Tycoso O

tano II 22 tf t Itf
13 73

we see that tano is a linear function of time
We now write the tangent law as

tano tanOo ct
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Using 0 as the independent variable the state

equations can be integrated to the final point

Uf Ie log tanOo t secoo
tanOf SecOf

V f Ic seeOo SecOf gtf

secoo secof tanotlog taannoft.se Jf f

y.f at tanto tanofsecOo seeOo SecOf tanOf

eogttinoooisE.IT Eats
f f

Note that c tanOo tanof
tf

As such there are three unknowns in the

above equations These are OoOf and tf
We also have three boundary conditions Yg Uf Vf
The three equations can be solved iteratively
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This idea was used to develop the Iterative

Guidance Mode or Ibm for the Saturn V
ascent guidance

To reduce numerical complexity in the solution

process or to facilitate an initial guess one may
make the following 1st order approximation

O Oo Ct
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Powered Ascent Guidance

We previously derived the linear tangent law and its use

in the iterative guidance mode for Saturn V A different

concept was used for the shuttle known as powered explicit
guidance or PEG PEG has also been discussed as an

option for future lunar missions

In these notes we'll look at a recently improved versionof
PEG developed by David Hull myself It was published
in the Journal of Guidance Control Dynamics in 2012 as

Optimal Solutions for Quasiplanar Ascent over a Spherical Moon

To begin we'll write the equationsof motion as

I arm r it Tcosocost awk tank rm uulr

Y V i Tsing g Mr twtr
E w w Tcososint ilr tan z rm vwlr

The radius of the moon is rm The radial position of the
vehicle is r rm y X is the curvilinear in plane distance

and y is the in plane altitude Z is the out of plane
curvilinear distance u v t w are the velocities T is the thrust

to mass T m 044 are thrust angles
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We will now make several assumptions

out of plane motion is small hence quasi planar

y Irm LL l s t r Erm and q is constant
w Rm LL T

As a result the equations reduce to

X u I Taos0cost

ay v i Tsim gm Hrm Toms
I _w I Tcososiny

For constant thrust minimizing fuel consumption is the same

as minimizing flight time Thus we have the following

optimal control problem

min tf

sit Eoms

initial states specified

final States specified except for Xf
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The Hamiltonian endpoint functions are

H Ain t Izu t 73W t 74Tcos cost
75 Tsino gmt

w rm autcososint
G Toff V2 Yf YI v3 Zf Ef

Vy Uf UI Us Vf Tf t Va Wf WI

The costate transversality conditions are

1 0 Ty 2754 rm

12 0 Is 72

73 0 y g

f
0

Hf 70

We see that 71,72 a 73 are constants Furthermore

Is Fatt Cz 76 Azt Cz

Because there are no control constraints the pointwise minimum

condition leads to

2
yo Aytsoot 75TCO 76 5084 0

24
24 74Tcost 76 614 0
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The above equations can be solved see the paper for details

sink
Iggy

cost I
Fa Ct

no effin
It is expected that both thrust angles will be small such
that

Clay LL I and
5
ay LL 1

Under these assumptions the controls are givenby

Sint Yay cost 1 sino lay cos0 1

The resulting boundary value problem is

I u Y V E W L T

i Thy azteca gmt w rm

w Thy Azt Cz Ty 2 Azteca u rm
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There are 6 unknowns 72 Cz73 Cz746 tf
We have 5 known final conditions plus Hf do It will be

shown that all unknowns can be divided by7410 eliminating
the need for Hf 70

The solution process begins by integrating the ie I t

dy equations For operation at constant thrust

T Pre

where B is the propellant mass flow rate a ve is the exhaust

velocity Hence the mass as a functionof time is

m mo pt

Thus the thrust to mass ratio is

TIM t Be mo pt ve t x

where a p We can now integrate u x directly

u Uo Velu i tha
x Xo not ve x t ln i t a Vet
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Now that we know u we can substitute in the Fy equation
integrate

initialvalue for Ay

Ay C 240 rm at at Cat

Yet arm 2 t 2 lull th 2at t

areca rm a t hell th tf

Dividing through by C gives us the bar variables

Ty 1 Luo rm Eth Et

vet arm 21 2 D lull Ha 2at F

avetz rm a t lull Ha t

We see that Ty is a function of Fz Ez and t The

remaining equations of motion can be rewritten as

i v i Islay q no Velu i t a J rm

E w w May
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Some parts of these equations can be integrated analytically

while others require numerical integration Generally solution

of the above differential equations can be written in terms of
the following which are integrals

i

centrifugal integrals

See the paper for their definitions Then

v vo 525 t Eat gut t É

y yo rot IQ t 55 gmt z t É

w wo 735 Gi

Z to wot 738 t 55

where the hats a denote that the integrals are evaluated

at time t
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Evaluating these at the final time gives us 5 equations

to solve for the 5 unknowns Define the following

Vx Uf no Vy Vf Vo t gutf F

Y Yf Yo Votf gmt 2 G Vz Wf Wo

Z Zf Zo Wotf

Then the u equation can be used to solve for tf

tf af é ve

with tf known the v t y equations can be solved

iteratively for Iz and Ez

Vy Fat EzL
y I Q Is

with Iz and I known the wa t equations can be

solved analytically for Iz and Ez
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75 Vas 74 iQ J's

CJ VzQ 7J L Q J's

Thus we were able to solve for the 5 unknowns 3 analytically

and 2 implicitly using iterations

As a final step we must calculate the controls This is

done using EqCtx a few pages back but using the

bar quantities

While the resultingsolution is relatively simple it is not

completely analytical Section 5 of the paper presents
an approximation strategy based on 54 1 that yields
an analytical solution
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Continuous Thrust Orbit Transfers

Consider a spacecraft in a circular orbit What is the

largest circular orbit it can reach The optimal

control problem is

max r tf tf is given

s t I u rio ro

i I I
t

IIE
uco o

i g
t

IIF Vio Mr

U tf O V tf Mrf
The variables are

r is radial distance

u is radial velocity
v is tangential velocity
Mo is initial mass

in is fuel burn rate

O is thrust angle
T is thrust force
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To solve the problem

H arnault Eet a E IE
G Tory YUf t V2 Uf My

The costate equations are

Ir Au I 2 a Ye

in ya ar Ig
Iv 31 away Try

The transversality conditions are

Arf Eye
to III

tug V

Arf V2
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The optimal control maximizes the Hamiltonian

Oct t argmax Ausino Tv cos

tano 72
Tv

It is impossible to integrate the resulting equations

analytically We will use a shooting method

Note that there are 6 ODES 3 States and

3 costates The initial conditions for the States
are known Guess the initial conditions for the
costates All six equations can now be integrated
together to the final time Check if

uCtf O v tf f
and Irf To 1 Tuffy312

2rf

If so you're done Otherwise iterate using
Newton's method
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Shooting method

We have seen that the optimality conditions of optimal
control involve two sets of differential equations the state

equations the costate equations

In a typical case we get the following system

I f Xiu to Xo tf Xf
I If 7

Moreover the pointwise minimum condition allows us to write

the control as a function of 7 i.e u u a Thus we

have a system of 2n coupled differential equations with

split boundary conditions

I f x X to Xo Xlt Xf
I exflxia

A set of differential equations where all initial conditions
are known is called an initial value problem IVP

Differential equations where some initial conditions a some

final conditions are known form a two point boundary
value problem TPB VP
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How can you solve an IVP IVPs are easy to solve

Give the problem to an integrator such as MATLAB's

ode45

How can you solve a TPBVP TPBVPs are considerably

more difficult as they are similar to solving nonlinear

equations MATLAB has a built in solver BVP4C but we
will often need more flexibility than afforded by it

Here is a general approach

Guess the unknown initial conditions

Integrate to the final time
Check if the final conditions are met

If not update the guess repeat

This procedure can be automated in MATLAB using

ode45 for integration
fsolve for updating i.e solving the equations
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Analytical Example Solve the following problem

I X t 7 X o 0 X 1 1

I 1

Integrating the 7 equation gives

A To t

substituting into the state equation gives

I X T.tt

Integrating this equation yields

x i a et i Ao t

At the final time we get

1 i to é i Ao I

o é 1 i to 70 1

Lecture Notes on Optimal Spacecraft Guidance — §19. Shooting Method

c©2022 Matt Harris 168



Let's check that the x equation goes from O to 1

x i i ét i i t t

Indeed X101 0 and Xli 1 Thus we've solved the

TPBUP by setting 70 710 1

Another Example Solve the following problem

I x Tt
I y

7
X Xo Xo x

Solving the 7 equation first gives

7 Toit

substituting into the x equation gives

x x atest

x 4 att ét xo dolt et
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Evaluating at the final time gives

q7o e Xoe Toye

x toe f 35 d do

To 4 x Xoe

3e e

Numerical Example we now consider a more challenging

problem It is challenging because the ODES are coupled

and nonlinear

I XZ It Xco O

I Tx X i I 1,1285

Set this up in MATLAB using ode45 a fsolve
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Analytic Guidance Strategies for landing
we'll look at some analytical a semi analytical approaches to

landing guidance To arrive at simple solutions we have

to simplify the dynamic model

One such approach was developed by Chris DSouza in 1997
His paper is called An optimal guidance law for planetary
landing we'll follow his approach

Assume that gravity is constant aerodynamic forces are

negligible mass dynamics are unimportant and there are no

control constraints The resulting equations of motion are

I u I ax downrange

y
v i ay crossrange

I w E azeg altitude1

As an objective he considers the weighted time energy
function tf

J Ttf If astray taz dtto

T is a scalar weight For small values of T we expect

longer flight times smaller control values For large values

of T we expect shorter flight times larger control values
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The paper claims a minimum time to landing can be

obtained quite easily by setting T to a large positive
number Do you think a minimum time solution exists

for a problem w o control constraints

To analyze the problem we write the Hamiltonian

endpoint functions

H att aftat Ayu Ayu Few
Iwaxt Tray Aw az g

G Ttf UxXf VyYf Vztf t Vully Uvf Wwwf

landing at the origin w zero speed

What happened to do D souza is ignoring it by assuming

70 1 We should not do this As an exercise explore
the 70 0 case

The costate a transversality conditions are

1 0

Ty O
74 V

tyg Vy
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Iz 0

In Tx Aug Vu

I Ty Ivy Vu

tug Vw

we can easily integrate these equations By defining
go tf t which is the amount of time remaining in
the trajectory they are

Ix Vx

Fy y

7 Y to wa

ar Vy tq t Vu

Iz Vz Aw Uz tgo t VW

The pointwise minimum condition is

x o
02 Twoa argmin

r
to't froay argmin

az arggin o Two
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Since all of the control accelerations are unconstrained

the minimiters can be found by setting the derivatives

equal to zero Thus

ax Fu Vxtgo Vu

ay Fu Vytao Vo

Az Aw Vita Vw

Note that the control in each direction is a linear function

of time since all of the v's are constants These functions

can be substituted into the state equations a integrated to

yield

u tutgo Mtg x tutti tout
v Ivytaft Vytgo y try to truth

w Vztq t Vutgo gtgo Z tutti Evita Igt

Note that the minus signs appear in x y AZ because

top is a negative function of time
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If we know our current state u u w x y z and remaining

flight time too then we can solve for all the v's

since they appear linearly in the above equations

Once we know the V's we can easily calculate the

optimal accelerations ax ay a az

an E Ya
I a

Note that as we approach tf tgo approaches zero causing

the control accelerations to explode One work around here

is to simply hold tgo constant once some minimal value

is reached

To this point we've ignored calculation of the flight time
To find tf we need to use the other transversality
condition Hf 26 27g T Note however that in

all of our analysis we've assumed that tq I 0 Thus

using this condition isn't too insightful at the moment
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An alternative is to use the fact that the Hamiltonian is
also constant since our problem is time invariant we

won't go through all the details but observe the following

facts

a

u

4 12,5 5 E g to Iq
Txu XU

É
and similarly for other terms

Thus multiplying through by too will result in a

quartic equation which can be solved analytically
According to DSouza that equation is

T g too 2 uh v2 w tq
12 uxtry wz too 18 x y't22 0

of course multiple solutions exist and we should the

least positive real root This completes the analysis for
this particular guidance law
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There are infinitely many alternatives to the above guidance law

There are entire classes of laws dating back to the Apollodays

Ping Lu authored a paper linking many of these titled
the theory of fractional polynomial powered descent

guidance in the Journal of Guidance Control a Dynamics

in 2020

In the absence of optimality generating trajectories can be

quite easy Think back to how we used polynomials to

fit curves between our boundary conditions To see this

we'll work through Lu's first example

Again we assume a constant gravity field so that the

equations of motion are

r V

j a g

where r v a g t
1123

we also continue to ignore mass

dynamics aerodynamic forces to control constraints

We use time to go as we did before top tf t
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To achieve a simple guidance law we assume a two term

parameterization i e we specify a desired thrust acceleration

of the form

ad C 4 tayo Cz42 tayo

where C Cz C
1123

are constants The 4 functions are basis

functions functions we get to choose We denote their first
9 Second integrals as

0

I too tilt dt
togo

Filtgo Fitt DT
go

we can then easily integrate the state equations to get
desired velocity position vectors

VdCt C OTCitgo t Cz452tayo g 1go

rdlt C TOCtqo cz zCtqo g 1got
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To track this trajectory we consider the following feedback form

act dah Bu tao rct Walt

Pr tao ret racts

where Pr and Pr are feedback gains that must be

determined Substituting in for ad ud and gives

a C d But prof t Cz datBrotz Brotz

gta Prtq 13 privet parrots

We now choose Pr and Pr sit the G Cz coefficients

go to zero

But É tz Pr fifth
D f ti ti ti to

with this selection the acceleration becomes

a gtao tprtao Br Burch Br ret
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which will guide the vehicle from its current state to

the origin terminating with zero velocity

Note that we never specified the basis functions of 42
Now let 4 I and 427 go Then

Pre I B

and the guidance law is

a

Iq
vet

g fret
vet to g

44
6

gtoo

Explicit
This particular guidance law is called the E guidance law

It was first derived by Cherry in 1964 though not in
this way The final form is the same as that of DSouza

Ping Lu goes on to describe many other guidance laws So

please read his paper
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Computational Guidance Strategies for Landing
We previously investigated analytical strategies for landing
Such strategies required minimal computation but required
numerous assumptions we'll now weaken some of those assumptions
which will require us to do more computation We will focus

on convex optimization approaches since these have provable

convergence in polynomial time

Like last time we will ignore aerodynamic forces and

assume constant gravity Unlike last time we will consider

mass dynamics and control constraints Thus the equations of
motion are

i v i that g
in 211TH

11TH E f

where r is the position v is the velocity m is the mass

and f is thrust magnitude bound

A typical objective is to minimize fuel consumption i e

min J 11TH at

to transfer the vehicle from its current state to a specified state
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As written this problem is non convex because

f TIM g is nonlinear

and ni 211TH is nonlinear

To get around this we introduce the followingtransformations

u TIM or
T

m

The equationsof motion are then

E V which are now linear

j ut g
ni amo which remains nonlinear

The mass equation can then be written as

him do mct Mo exp LJoCT dt

we can see that minimizing the fuel or maximizing the final
mass is equivalent to

tf
min J oct dT

O

Lecture Notes on Optimal Spacecraft Guidance — §21. Descent Applications - Computational
Strategies

c©2022 Matt Harris 182



We can then write llull o as an inequality lull to

and it will naturally be satisfied since o is being minimized

We now return to our mass dynamics which are non convex

We can rigorously linearize them through another variable

transformation Let 2 In m such that

if no

This is linear Unfortunately the control constraint is now

non convex since it is non convex in Z

11TH f T mo t p o E pet

We are now forced to make some approximation Any
approximation should be conservative in the sense that the

above constraint is satisfied

One overly conservative approach is to use an upperbound

on mct One such upper bound is to In mo Then

o s f ee's pet
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A better alternative is to approximate the non linearity
with a Taylor series centered at I a good E is to be
determined

pet p e
E

eeIft I

we can easilyshow that this linear approximation is conservative

using the mean value theorem which says there is a I s t

ee
Z
ee
E
peEtz E type z It

Since the last term is non negative we conclude that

ee
E
peItz II a get

As for I we can provide a guess such as

Ict en mo aft Mo aft Mary
ln many otherwise

with this definition of Ict we know that

ECt E 2Ct
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To summarize we've transformed a non convex problem into

a convexform The transformation is not exact since we

made an approximation However the transformation is feasible
since we ensured the approximation was conservative

The resulting convex problem is stated below

min Oct dt

s t F V

I a

9 I I given
i ut g ro given if given

1 to given
Hull to

of pet pét e E
ln mo apt E Z
Elt In mo aft Mo 2ft 2Mary

In Mary otherwise

The above problem is probably impossible to solve indirectly using
the optimality conditions However it is easily discretized and

solved directly usingYalmip for example

This analysis was based on the 2007 paperby Acilemese t Ploen

Called ConvexProgramming Approach to Powered Descent Guidance

for Mars Landing in J GCD
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The previous problem originally had a control constraint

of the form

11TH tf

which meant the thrust magnitude was bounded In such a

case the engine is allowed to turn off since this corresponds

to 11111 0 Lf

Having an engine turn off during descent is less than
desirable since chemical thrusters have limited throttling

capability and once an engine is off it might not turn
back out

We can impose a throttling constraint as
aty

Th
e THE k GqgmBg six

This type of constraint looks like a donut or annulus

Thus it is non convex and complicates our previous

analysis
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we will now present a relaxationstrategy for this constraint i e
a way to make this constraint convex

To do this we will use the following lifting to an extra

dimension A relaxation loosening of the constraints

f k 11THKfz 11TH E T

f k T k fz

we now reformulate our control problem as

tf
min f Tat

s t E v ro given rf given
v TIM1g Vo given Vf given
in LT mo given
11TH ET

l E TE k
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For this to be an exact relaxation we need to show

that 11TH T at all times To show this let's look at

the optimality conditions

H IoT Ifv II Hmg x7zT

The costate and transversality conditions are

O Iif Vii

Iz I Izf V2

IIT O
I7312m

Hf D

We will now show that 72 0 cannot hold everywhere

Suppose that it does Then 71 0 and 73 0 everywhere
Then Hf 0 implies 70 0 which violates non triviality
Thus 72 cannot be zero everywhere

This means that 7oz Titta for some a 40
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The pointwise minimum condition says that the optimal
control T must satisfy

T
T argmin IT

11THET m

since 7dm is non zero except possibly at one point
the optimal thrust is

1 121in T i e 11TH T
11721mV

Note that when 111 11 7 the non convex constraint

f k 11TH Kfz is satisfied In summary we've proved
that this convex relaxation will solve the original
non convex problem

The paper by Acitemese Ploen goes on to show that

11TH p or 11TH fz

and it never takes an intermediate value This is

equivalent to showing singular arcs cannot happen
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After all this the problem is still non convex because of the
non linear dynamics We will again need the U o Z

transformations Everything we did before holds but we

now need to work on

f E 11TH p E mo T f e
Z
E T

This constraint is convex

MumEmmi
But it isn't a second order cone constraint To make it one

we'll use a second order Taylor approximation about I Then

e e
I

I Iz E It IT to

And using the mean value theorem we can show that

this is conservative
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The final convex problem is

tf
min oh DT

0

s t r v ro given rf given
J ut g ro given if given1

I do to give
Hull to

o hi eeHz It
o z e e

I i It E Ett IT
en mo aft E Z E en mo al t

Elt en mo aft Mo 2kt Indy
bn Mary otherwise

Like before solving this indirectly is likely impossible
Discretizing it solving it directly is easy This problem
can be solved onboard a flight computer with guaranteed
convergence to global optimality in polynomial time

And recall all of this started w a non convex problem
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Q Guidance

In these notes we'll explore a technique to transfer a

spacecraft from one orbit to another using continuous
non impulsive thrust It is called Q Guidance or cross

product steering It is fuel optimal under a flat planet
assumption and approximately so for a spherical planet It

was first developed for missiles and is currently planned

for use on the 2nd stage of the Mars Ascent Vehicle MAV

As motivation let's consider a problem on a flat planet
with constant gravitational force To reach a point F FCt

by coasting from the point Ect the velocity at this

point JrCt must satisfy

FCA Fit ti f Trot ti 5g

which comes from simple integration of É T E g
Solving for Jr gives

Ict F Fit ti tyg

If at this moment the vehicle's velocity Jct is not

equal to Tret i e the vehicle is not on a trajectory

that will coast to the desired final point then we

must thrust to get there
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Denote the velocity to be gained as Jg such that

Tg Tr i

Differentiating and substituting

Ct t Jr Jr J ti t g
and I g AT the thrust acceleration

Jg L Jg IT
ti t

we sometimes define Q t I such that

Fg Qing IT

hence the name Q guidance To reach the desired

trajectory we must choose IT to drive Jg 10 To

explore this further see that

dayLigTg adf.tv 2vg.Jg

2vg 2 aT Tg
ti t
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Since Vg is non negative its derivative must be made

negative to drive it to zero To do so as quickly as

possible we must choose at parallel to Jg and as

large as possible in magnitude If Tct is the upper
bound on acceleration at time t

ath
Iggy

Tct

Note that it may not be possible to make the

derivative negative if T is not sufficiently large

Observe that Q I for this problem which is a

very special situation Also observe that this choice

of at causes Ig x Tg to be zero since

igxig Itg at x Tg

tgxig attig
0

According to Battin it is this cross product property that

is important generalizes to spherical bodies Hence
Q guidance is also called cross product steering
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g

Let's now explore the general case where

I gCF IT

we again define

Jg Tr J

s t Tg Jr gCF It

since Jr depends on T and F the chain rule gives

II II FILE
2Jr 2Jr J
at air

3 3 Cir Tg

FIT affair II ig

dairy gCF since it is a coasting traj

girl 3 Jg
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Substituting this back into the Ig equation with Q 3
gives

Ig Qig at

with this as our equation for Fg Battin says we

should choose at s t Yg xJg 0 Define

pct Qu Ight s t Ég p at

Cross product steering is then to choose at such that

p at x Jg pxig atxig 0

at xTg pxig Does it have to equal p

where again the vehicle must have sufficient thrust to
achieve this Vector post multiplication by Jg and

using ax5 xt a E 5 5 E a
yields

Cat Tg Jg Vgat p g ig vip

Dividing by Vg
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at p t fat og p igjig

Denoting Ig slug we can write

at p at.iq p igjig
T

p q prig ig B

Squaring both sides gives

IE pep 21g p ig pti q p ig

at p
t 2qp.iq 2 pig t q2 2qp.iq pig

p't q p ig

Using the above to solve for q gives

q Lai p p.iq jk o

From here it is again evident that at must be

sufficiently large for q to be real

Lecture Notes on Optimal Spacecraft Guidance — §22. Q-Guidance

c©2022 Matt Harris 197



It is common to know the magnitude of thrust available
at a given time Thus we use o to calculate

q and then D to calculate It Bydoing this
continuously or periodically in guidance Jg will be

driven to zero This approach quid us to the desired

orbit

When the available thrust is not sufficiently large
the thrust acceleration is chosen parallel to Jg
and as large as possible in magnitude i.e

IT VI ATmax
vg
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The calculation of Jr and Q depends on the target
orbit and can be quite involved depending on the situation

Circularization
consider a vehicle at position F with a goal ofcircularizationin a possibly different plane defined by Tn
Then

Jr 4 inxir

By driving 0g to zero we control the shape circular

and orientation Tn but not the final radius

By rewriting Jr as

Jr _Sniffr3
with Sn

_f
o nz ny
Nz 0 my

my n o

where thx Ny and Nz are the direction cosines of Tn
we find

Q fE safe zirirt
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Elliptic Target Orbit

To achieve an elliptic orbit with given p e and in

Jr If te CE i T r Type inxir

Q t.ruLprerjijhirir't
yftffe2 fp iYjf'hCI irirt

npqzsh.CI 2irirt

where Sh is the cross product matrix w Shir Thx.ir
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Let's try to derive Jr for the elliptic orbit insertion

Given F p e and th

1 Calculate h Tpf
2

2 Calculate Vr

I e p Z note that the use of
this equation assumes

l e 2 v r is consistent w the
p r µ desired orbit

up 2 4 et

3 Calculate Jr Recognize that

Jr x F hi

Postmultiplying by F gives

Jr x F F Trier

Jr F F fr F Jr text hiuxr.ir
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Solving for Jr gives

Jr v r.ir irtffu iuxir

of
squaring both sides gives

Vf of ppg
2gtfo if linxir

q
2 4 et Jk

Hence

Jr I 2 4 et
ppg Kir Trap inxir

Is this the same as Battin His tar term is

i fer if e p2p app i

pipe pipe Itf Hp

2 1 l et
ppf It is
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Estimate of Burn Time
It is not uncommon for continuous burns to be of
short duration approximating impulsive burns For example
the second stage burn of MAV is about 25 seconds

Assuming Q is constant along w some other assumptions

we can derive an estimate for the burn time

Because of cross product steering Jg is not rotating
Because Q is assumed constant 15 will have a fixed
direction proportional to Jg Let Avg Bug be the
components of 15 along perpendicular to Jg Then

A
Figg

B
pigs A'jk

Note that

Jg Jg afp p ai p a t

p2 at 215 at
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Substituting in aT p Eg gives

daft p af 215 Cp Eg

af p t 2p Eg

at A B rig t 2Avgdiddt

Solving for dugldt using the quadratic formula

taking the negative root sincevg should be decreasing

daff at I Ba vgj Avg

Expanding the root into a series and keeping onlythe

first term gives

duff at i
Bavg Avg

We now introduce a new variable y satisfying

i Eai
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The resulting ODE for y is linear and 2nd order

if t ata't A yo B'y o

time varying

we now assume a constant thrust Then

a
ni E fit ai t j

We now assume that the time rate of change of the
thrust acceleration to the thrust acceleration is a

constant In other words we assume the coefficient

in the ODE is constant

The solution to the ODE is then given by its
characteristic values

27 272 rime A I A't 2132tmm mm 2A
k

Lecture Notes on Optimal Spacecraft Guidance — §22. Q-Guidance

c©2022 Matt Harris 205



In terms of the original variable Vg not y

zBavg
I e

t czzekt
eat east

where c can be resolved using the initial conditions

Defining

w 132 07 c w

Lay o w 172

Finally the burn time estimate tb is found using
the fact that VgHb D Thus

tb ent I
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